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SUMMARY

This report describes the construction of an explicit, single time-step, conservative, finite-
volume method for multidimensional advective flow, based on a uniformly third-order poly-
nomial interpolation algorithm (UTOPIA). Particular attention is paid to the problem of
flow-to-grid angle-dependent, anisotropic distortion typical of one-dimensional schemes used
component-wise. The third-order multidimensional scheme automatically includes certain
cross-difference terms that guarantee good isotropy (and stability). However, above first-
order, polynomial-based advection schemes do not preserve positivity (the multidimensional
analogue of monotonicity). For this reason, a multidimensional generalisation of the first
author's universal flux-limiter is sought. This is a very challenging problem. A simple flux-
limiter can be found; but this introduces strong anisotropic distortion. A more sophisticated
technique, limiting part of the flux and then restoring the isotropy-maintaining cross-terms
afterwards, gives more satisfactory results. Test cases are confined to two dimensions;
three-dimensional extensions are briefly discussed.

INTRODUCTION

Many numerical models in computational fluid dynamics employ so-called "leap-frog"
finite-difference schemes using second-order centred differences in both time and space.
One significant attribute of such methods is that for purely advective flow there is no
artificial dissipation supplied from the numerical scheme. This has both positive and
negative consequences. On the one hand, where the flow is well resolved, the numerical
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method does not corrupt modelled physical diffusivity or viscosity. However, it is well
known that in the presence of sharp changes in gradient, centred schemes exhibit serious
phase errors generating spurious oscillations and unphysical maxima and minima in the
transported variables. And because of the lack of inherent numerical dissipation, these
oscillations are not strongly damped and may lead to unnatural processes such as "numerical
turbulence" thereby producing anomalous mixing. First-order methods are nonoscillatory,
but contain too much inherent artificial diffusivity to be seriously considered as the basis for
a multidimensional advection scheme. By contrast, third-order upwind schemes possess the
inherent stability of upwinding in addition to high accuracy and excellent phase behaviour,
although small unphysical undershoots or overshoots may still be excited in sharp-gradient
regions. The current work focuses on the development of an explicit, single-time-step,
conservative, flux-based, control-volume algorithm for multidimensional advection. This
is in contrast to the common practice of operator-splitting (using locally one-dimensional
algorithms) which, by its nature, cannot be formulated in a conservative manner.

One other aspect of multidimensional advection schemes that has received little
attention is the problem of anisotropic distortion that occurs when advection is oblique or
skew to the grid lines. The problem stems from using one-dimensional advection formulae
in each coordinate direction separately, without explicitly taking account of necessary cross-
difference terms. In practical simulations of physical processes, the effects of this distortion
are not generally immediately apparent because the flow patterns are very complex and the
true solution is not normally known. However, simple model test problems (with known
solutions) of advection oblique to the grid suggest that serious quantitative errors may be
introduced through this mechanism in some circumstances. It should be noted that the
commonly used test problem of advection of an initial profile around a circular path does not
highlight this type of distortion because the flow-to-grid angle is continuously changing. But
in a relatively constant-direction flow field, this problem can evidently lead to quite
substantial errors. In addition, above first-order, one-dimensional schemes used component-
wise for multidimensional pure advection are unconditionally unstable (unless the flow is
aligned with the grid). This is usually a weak long-wavelength instability and is often not
excited in spatially varying velocity fields. Although a small amount of physical diffusion
is usually enough to suppress the instability, an advectively stable algorithm seems more
desirable.

A number of one-dimensional monotonicity-preserving (MP) advection schemes have
recently been compared (Bull, 1990). Schemes tested include a second-order total-variation-
diminishing (TVD) flux-limited scheme due to van Leer (1974), referred to as the curved-
line advection method (CLAM), and Leonard's (1991) ULTIMATE QUICKEST algorithm,
a third-order one-dimensional MP advection scheme. These methods have also been tested
in two dimensions with explicit forward time-stepping using fluxes based on the one-
dimensional formulae in each coordinate direction. Although the CLAM scheme maintains
"positivity" (the multidimensional analogue of monotonicity) provided the Courant number
is small enough, the one-dimensional ULTIMATE scheme, applied coordinate-wise does not.
In addition, both methods generate strong anisotropic distortion, although of a different type
to that observed with unlimited centred differences.

The following sections address the two outstanding problems of (i): eliminating
anisotropic distortion and (ii): developing a truly multidimensional flux-limiting strategy.
The proposed techniques are tested on a conceptually simple but numerically very
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challenging problem involving pure two-dimensional advection of an initial circularly
symmetric Gaussian profile by a constant velocity field oblique to a uniform square mesh.
An angle of 45' usually gives worst-case distortion; however, other angles are also
considered in order to develop some perspective on flow-to-grid angle dependence. All of
the test cases and most of the discussion will be confined to two dimensions. Although there
is a large theoretical gap to be bridged between one and two dimensions, it appears that,
once this is achieved, algorithmic extension to three dimensional advection may be relatively
straight-forward.

ELIMINATION OF ANISOTROPIC DISTORTION

Anisotropic distortion appears in multidimensional advection schemes that rely on the
respective one-dimensional formulae in each coordinate direction separately. As a result of
this, computed solutions are strongly dependent on the flow-to-grid angle; equivalently, this
means that solutions are not grid-orientation independent. This problem can be seen
theoretically by making use of the two-dimensional complex amplitude ratio (or amplification
factor) G. For reference, consider a model two-dimensional advection-diffusion equation
for a scalar O(x,y,t)

ao + u 
ao + v ao 

= D
^a20 + 

a20 1 	 (1)
at	 ax	 ay	 ax,	 aye /

where u, v, and D are constant coefficients. It is of interest to follow the evolution of a
wave of the form

	

0 = A(t) exp(L k x) exp(L ky y)	 (2)

involving component wave-numbers k and ky , where A(t) is the (complex) amplitude and
L (iota) represents the imaginary unit, ^ The complex amplitude ratio G is then defined
as

G = 0(x , y, t+At ) - A(t +At)	
(3)

4(x, y, t)	 A(t)

Substitution of (2) into (1) gives

= A(0) exp[-(k.2 +ky)Dt] exp[L k (x -ut)] exp[L ky(y -vt)]	 (4)

so that the exact expression for the two-dimensional G of the model advection-diffusion
equation is

G^X,^t = exP[-(asex +ayey)] exp( —c c,6s ) exp( —c cy8y )	 (5)

where the diffusion parameters

DAt	 (6)
CYx	

AX
=	

2
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and

and component Courant numbers

and

Ci = DOz
	

(7)Ay

cx = ^t	 (8)

CY = Q t	 (9)
AY

have been introduced, and the nondimensional wave-numbers are given by

0.11 = k Ox	 (10)

and

BY = k Ay	 (11)

For purely advective flow in two dimensions, D = 0 and (5) becomes

G.dv = exp[-i(cx Ox +cy 0Y A	 (12)

A Taylor expansion of real and imaginary parts of this expression gives, to third order in ex
and 9Y ,

G.d^ = 1 - 2 
cx ex + cx ex cY eY + 

2 
Cy ey1 + ...

! [(Cx ox + CY 0 ) - I (Cx ex + Cy e ) 3 + ...
J 	

(13)

The corresponding numerical G for a given computational method (involving a single
forward time-step) can be similarly expanded in a Taylor series. It is not difficult to see that
the use of only one-dimensional advective formulae in each coordinate direction would result
in a G-expansion involving powers of (c x ex) and (c,0Y) separately, but no cross-terms. In
particular, the important second-order term

(cx ex) (cy OY)	 (14)

appearing in (13), is absent from such schemes. Thus, flow along coordinate directions
(either cx = 0 or cY = 0) may be well modelled, but at other angles the missing term will
clearly lead to errors. One might expect most distortion to occur for flow along grid-
diagonals (i.e., at 45° on a uniform square mesh), and this is in fact borne out by numerical
experiments.

As will be shown, it is possible to devise an explicit, forward-time-step, conservative
control-volume formulation of advective transport that includes all the terms (through third
order) involved in (13). It is also a straight-forward matter to generalise the method to three
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dimensions (see Appendix 1), and to extend the theory to include diffusion terms to the same
order (Appendix 2). This uniformly third -order multidimensional scheme is not, however,
positivity preserving. Rather, it is the analogue of the third -order one -dimensional
QUICKEST scheme (Leonard, 1979), which also generates (albeit relatively small) over-
shoots or undershoots when modelling sharp changes in gradient. In the one-dimensional
case, a rather simple universal limiter (valid for any order of accuracy) can be applied,
resulting in the monotonicity -preserving ULTIMATE QUICKEST scheme (Leonard, 1991).
The extension of the limiting strategy to two (and three) dimensions is by no means straight-
forward; however, some progress has been made, and this is described in the next section.
The remainder of this section is devoted to studying anisotropic distortion of unlimited
schemes and to the description of the two-dimensional uniformly third-order advection
method.

A simple test problem has been set up to study anisotropic distortion under purely
advective conditions. This consists of a uniform square grid (Ox = Ay = h) over a 31 X31
domain (i.e., h = 1 /31) with a uniform velocity field at an angle 0 to the x-axis

V = (u, v) _ (Vo cos0, Vo sin0)	 (15)

The problem simulates the equation

ao + V •VO = 0
at

representing pure advection of a simple scalar "density" profile, 0(x,y,t), taken here to be
a circularly symmetric Gaussian distribution with a standard deviation of 3h , initially
established at the centre of the grid. The domain has doubly periodic boundary conditions
so that the profile can be advected any distance, depending on the run time. In most cases,
0 is chosen to be 45° (cX = c ), and At is adjusted so that the (exact-solution) profile would
be advected a distance 31V^21 h; i.e., to the centre of the next diagonal "box". This is
shown schematically for the exact solution in Figure 1(a), giving contours of constant
density. Figure 1(b) shows a "three-dimensional" portrayal of the initial (= final) distri-
bution. Of course, the actual computation takes place within a single box, with the profile
"exiting" at the top-right corner and "re-entering" at the lower -left, with the final position
at the center again. For the 45' case, cz = cy = 31 1N, where N is the number of time steps.

By contrast to the exact solution of Figure 1, Figure 2 shows the results of using the
("standard") space-time-centred leap-frog scheme,

,, n+1//,,	 _	 (	 ((	 1'^
Wi, j	 — ^i, j

n-1 — 
Cs 

(on

i+ j — ^
rt

i-1, J) — Cy \^
n
i, j+1 — ^

n

i, J-1)	 )

for cz = cy = 0.25 (N = 124). Clearly, even for this relatively smooth initial profile, there
has been significant anisotropic distortion in addition to serious (phase-lag) oscillations due
to the inherent (undamped) numerical dispersion, characteristic of this scheme. The second-
order (three time-level) leap-frog scheme gives results showing similar distortion to that of
a method using the (two time-level) explicit one-dimensional Lax-Wendroff (1960) scheme
in each coordinate direction separately,

(16)
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n+1	 _	 n	 1	 n	 ,,//,,n	 _ Cs // n	 n	 n	
l

	

^i, j	 — 0i, i — C. 2 (^i+1, j — Y'i-1, 1)	 2 (O,+1, j — 2^i, j + ^i -1, j),

1	 Cy /	 ,/,	 ll

	

- Cy 
2 (Oi, j+1 — ^i j-1) — 2 \^ j+1 — 2^i j + O j-1)J	 (18)

This scheme is unconditionally unstable unless the flow is aligned with one of the coordinate
directions. However, for small time-steps, the instability is weak, and results can be
obtained over short run-times, as shown in Figure 3. Again, significant distortion and phase-
lag oscillations are immediately obvious. For extended run-times, the computation will
ultimately "blow-up".

As in the one-dimensional case, oscillations can be avoided by reverting to a first-order
upwind technique. If one employs a simple-minded, coordinate-wise one-dimensional
scheme (for cs and cy both positive)

	

On+I	 n	 / n	 n	 ( rt	 n	 (19)

	

i, j	 — Oi, j — Cs lot, j — Oi-1, j) — Cy l^i, I — ^i, I -1)

the results are as shown in Figure 4 for cx = cy = 0.5. In this case there are no undershoots
(this is the simplest two-dimensional positivity-preserving advection scheme). However,
gross anisotropic distortion is observed, as is a massive loss in peak value. Both of these
effects are due to the large amount of artificial numerical diffusion inherent in this method.
Figure 5 shows the diamond-shaped von Neumann stability region in the (c,, c y ) plane for
first-order upwinding used coordinate-wise, allowing for positive or negative velocity
components; i.e., l cz l + Icy  < 1.

Equation (19) can be rewritten as a conservative, control-volume, explicit update
equation

	

,
n+1	 i + FLUXW (/i j - FLUXW ((i+1

	

i, j	 = ^n j	 \ f j)	 l	 j)

+ FLUXS(i, j) - FLUXS(i, j+l)	 (20)

by identifying the west-face advective flux (for cz > 0) as

FLUXW(i , j) = cs ^w = cx oi-1, j	 (21)

and the south-face flux (for c y > 0) as

FLUXS(i, j) = cy ^, = cy ^i j_1	 (22)

where 4w and 0, are considered to be the effective west and south face-values, respectively,
advected into a given control volume. Note that (20) guarantees conservation by expressing
the east-face flux in terms of the west-face flux at control-volume (i+ 1, j), and similarly for
the north-face flux in terms of the south-face of CV(i, j+1). This simple type of first-order
upwinding assumes that the scalar value advected across any particular face is effectively
equal to the immediate upwind node-value in a direction normal to that face. But this does
not take account of the fact that, in general, the advective flux is sweeping across the face
at an angle (rather than simply in the normal direction). Figure 6 suggests that the (upwind-
biased) transverse gradient of 0 should be important in this respect. In fact, if one assumes
that in the vicinity of the west face, the scalar value varies linearly between ^ _,, j and
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On_, ,j _ 1 , it is not difficult to show that the corresponding average face-value (over a time-step
At) is

cy	 n	 ,/, , j-1)	 (23)j	
2 (^
	 4i-1, j —	 ^i-1

thus differing from the simple-minded upwind formula by the appearance of the transverse-
gradient term (for cX , cy > 0)

GRADTW	 i-1. j - ^i-1, j-1
	 (24)

Similarly, the south-face value can be shown to be

(25)O5 = on ;_, -	 GRADTS

GRADTS =
o n

 j 1 — ^n-1, j-1

where (again for cs , cy > 0)

(26)

When these formulae are used in (20), the results are as shown in Figure 7. By comparison
with Figure 4, it is immediately obvious that inclusion of the transverse-gradient terms has
restored isotropy (at least for 0 = 45°), although there is still significant artificial diffusion
as evidenced by the strong loss in peak value and concomitant spreading. At other advection
angles there is some anisotropic distortion, but not nearly as much as with the simple first-
order scheme of (19). The von Neumann stability region in the (cX , cy ) plane is now a
square: (1- I c., (1- I cy >_ 0. Also note that exact point-to-point transfer occurs (across
a grid diagonal) when I c., _ cy = 1.

Inclusion of the GRADT terms can be directly related to the appearance of the second-
order cross-term (cx Bz) (cy By) in the Taylor expansion of the numerical complex amplitude
ratio. Thus it would appear that the two-dimensional, conservative, flux-based, control-
volume formulation of the Lax-Wendroff scheme would benefit from inclusion of these
terms, as well. This is suggested in Figure 8, where it is assumed that 0 has a linear
dependence on both x and y in the vicinity of the west face, collocated (at time-level n) at

i, j ,^° , j , and ^°_, ;_, (for cx and cy both positive). Clearly from the figure, these are the
appropriate (upwind-biased) nodes. Taking the time average (over At) of the west-face value
(equivalent to averaging 5n over the area covered by the small angled arrows) then leads to

Ow —	 2 (0n j + 0n-1, j)	
2 (0n j —0 i-1, j)	 2 (, n 1, j —	 , j-1)	 (27)

where one again sees the appearance of the GRADTW term, defined in (24). The corre-
sponding south-face value (for cx and cy both positive) is

Os	 2 (0i, j + 0n, j-1)	 2	 n J — ^n, j-1)	 2 (Oi, j-1 — Oi-1, j-1)	 (28)

It should be clear that the GRADT terms are dependent on the signs of both cX and cy,
although the other (face-centred) terms in (27) and (28) are independent of the signs of the
respective advecting velocity components. The results of using (27) and (28) in (20) are
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shown in Figure 9 for cs = c, = 0.25. This is clearly an improvement over Figure 3,
although there is still a large degree of phase-lag dispersion (just as in the one-dimensional
case). The Taylor expansion of the numerical G corresponding to this scheme matches (13)
identically through all second-order terms (including the cz 0s cy 6y cross-term). Thus it can
be considered to be the two-dimensional, conservative, control-volume analogue of the Lax-
Wendroff scheme. Inclusion of the transverse-gradient terms also restores stability; the
stable region is once again the square: (1- I c x I ) (1- I cy I ) >_ 0. Extension to three dimensions
is straight-forward, simply involving an additional transverse-gradient term (along the extra
coordinate direction) in the formulae for each of the three face-values. Incorporation of
standard second-order differences for diffusive fluxes is consistent with the Taylor expansion
of (5) involving all second-order combinations of the ci's and c's.

Flux-Based Formulation
It is instructive to re-derive the uniformly second-order advection scheme from a rather

different view-point. This will suggest a way of generalising to uniformly third (and
potentially higher) order methods. The idea is based on the fact that for pure advection at
a constant velocity V, the scalar value at a point x at the new time-level is equal to that at
position x-VOt evaluated at a time At earlier:

O(x, t+ot) = O(x -VOt, t)	 (29)

This means that 0 can be predicted at any given (nodal) point by projecting back along an
advective characteristic and interpolating spatially to evaluate 0 at the origination point at
the earlier time-level. The accuracy of the scheme then depends entirely on the form of the
spatial interpolation used for evaluation of the right-hand side of (29). Although the
algorithm is derived on the basis of a constant V, the update algorithm is subsequently
rewritten in a flux-based, conservative control-volume form, wherein the individual
advectiog face velocities are allowed to be spatially varying in conformity with a solenoidal
velocity field.

Referring to Figure 10, assume that at the earlier time-level

O(x , y , t) = o°(^, .)	 (30)

where ^ and ,q are local x- and y-coordinates centered in the control volume. In the case
shown (cs , cy > 0), assume that

On Q , 0 = C, + Cz + C3 t 2 + Cq + C5 z + C6	
(31)

and evaluate the C's by collocating at the six node-values. Note that the inclusion of the
(i-1, j-1)-node gives the appropriate upwind bias in the quadrant corresponding to the
position of the origination point (shown by the circled star). It should be clear how the
stencil changes for origination points in other quadrants.



1/ n	 n
`^ l , J` 1 — ^ i , J-I)

2 Ay
C4 = (35)

9

It is not difficult to show that the C's are given by

Cl = O n ;	 (32)

	

C	 = 
(on+1, j - O n-1 , j)	 (33)

	

2	 2 Ax

C = (On 1, j — 20n j + On 1, i)	 (34)
3	 2A,2

(O n
	 _ 2 ^/, n + n

C	 =	 \^i, J`1	 ^Vi, j	 ^i, J-1)	 (36)
CS 	 2Ay2

and

	

C	
= (onj — on 1, j — on j-1 + on- 1, j - 1)	 (37)

	

6	 AX Ov

The upwind bias of the latter coefficient, of course, depends on the signs of cx and cy,
whereas the other coefficients are centred with respect to node (i, j ). It is easy to see how
C6 would change for the three other combinations of signs of cx and cy.

From (29) and (30), the explicit update formula can be written in general as 	
p

	

,nl = On ( —u0t, — VOr)	 (38)

For the particular (second-order) case shown in Figure 10, substituting the above C-values
results in

2
n+1	 _	 n	 _ Cz (( n	 n	 Cx (( n	 ,/, n 	 ,/,n

^i, j	 — ^i, j	 2 1^i+1, 1 — ^i-1, j) + 2 \^i +1, J — 2^i j + O n 1, j)

2
C	 Cy (( , n/,	 n

2 (O
n
i, j+1 — ^ 

n
i, j-1) + 2 lV'i, j+1 — 2 0 n

 j + Oi, j-1)

+ CxCy 
(on

i, j — O i-1, J 	
O

n, J-1 + 
O n

	

i-1, 1-1)	 (39)

This can be rewritten in conservative control-volume form, as given by (20), by identifying
west and south face-values as, respectively,

,^, w =	 (	 C	 Cy	 40v	 \^n j + ^^-1, i) — 2 (0n i — O n ,, j) — 2 GRADTW	 ( )
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and

0, - 
2 

(4n i + ^n i-i) - 2 (on i - on i-^) - 2 GRADTS	 (41)

where GRADTW and GRADTS are given (for c z7 cy > 0) by (24) and (26), respectively.
These face-values are identical to those given by (27) and (28)—i.e., the one-dimensional
Lax-Wendroff formulae together with the appropriate (upwind-biased) GRADT terms. Note
particularly how the cross-difference term, given by the last term in (39), has been split
between x- and y-fluxes. This is made possible because of the identity

(k i - or-1'j) - (0i, i-1 - (k r-i, I-1 ) - (kj - 0i, i-d - (O;-t. i - 1^;-i, i-i)	 (42)

corresponding to the cross-derivative identity

	

ago	 -	 a2`Y	 (43)
	ay ax	 ax ay

This type of manipulation is particularly important in developing higher-order formulae, such
as the uniformly third-order method considered next. It should also be noted from (39) that
exact nodal point-to-point transfer occurs when c s = 1 and cy = 0 (or vice versa), and also
(across the grid diagonal) when cs = cy = 1, when GRADT-terms are included.

Uniformly Third Order Polynomial Interpolation Algorithm
Figure 11 shows the appropriate upwind-biased 10-point stencil for collocating a third-

order polynomial of the form

O°(x, 71) =	 C,	 + C2 S	 + C3 S 2 + Cq 53

+C5 77 +C6 ^ 71 +C, 5271

+ C
g _q 

2 + C
g S 

2

	

+ C 1 7f 3	 (44)

For notational convenience the subscripts on the node-values denote central-point (P), west
(W), east (E), north (N), south (S), north-west (NW), double-west (WW), etc. (as usual,
capital letters are used for node-values and lower-case for face-values); the time-level n
superscript has also been dropped. In Figure 11, the collocation points have been chosen
so as to give some upwind bias corresponding to the location of the origination point. Also
note the symmetry of the stencil about a diagonal closest in direction to that of the advecting
velocity vector. (It should be clear how the stencil changes for location of the origination
point in other quadrants). For this choice of stencil, it is not difficult to derive the following
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C-values:

Cl = Op	 (45)

C = (OE - OW) - (OE - 30p + 3 0 w - O ww)	 (46)
2	

2 Ox	 6 Ax

C = (oE - 20p + 0w)	 (47)
3	 2AX2

C - (OE - 30, + 30w - Oww)	 (48)
4	

6Ax3

C5 	 (ON
5

— O S ) _ (ON — 3^P + 3 ^S — ^SS ) (49)
2 0y 6 Ay

C	 =	 (oE - ^p) -
6

(OSE - OS) + ( ON - 01W)
- (01 - O W) (50)

2 Ox Ay

C	 =	 (wE -
C7

(kSE) - 2 (OP - O S ) + (O W - (k Sw ) (51)

2 0x 2 0y

CC8 -
(ON - 24)p + (kS)

(52)
2Ayz

C	 =	 (ON —

9
`f' Nw) — 2 (O P — O w) + (O s — (ksw) (53)

2 Ox Ay 2

and

C	 -1O

(ON
- 30P + 30s - OSS) (54)

6Ay3
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Substitution of these values into (44) and (38) results in the following formula for the
updated (superscript +) central-point node -value:

2

0 P - OP - 2 (0E - 0w) + C
z
 (1 Cs ) (OE - 34 P + 30 W - Oww)

2

2 (ON - OS) + 
cY (

1
 6 

CY) (ON - 3 0P + 34s - Oss)

C 2	 c2

+ 2 (OE - 20P + O w) + 2 (ON - 20P + Os)

+ c2 Y 
[`OE - OP) - (OSE - OS ) + (ON - ONW) - (OP - OW)]

2 r

	 ,/,	 {	
,/,	 1

cs2 
Y [(ON - ONW) - 2 (`^'P - ` w) + (`YS - 0SW)]

2
C."2cY 

[(OE - OsE) - 2 (OP - O s) + (O W - OSW)]	 (55)

This can be written in conservative control-volume form by identifying the effective advected
west-face value as

_ z

0 " - 2 (OP + 4W) - 2 (`NP - O W) - (1 6 
Cs) 

(OP - 20 w + 0.)

(,{{
2

4

c
 - O S) + (ONW - O W) ] + 4 (ONw - 20 W + Osw)

	

+ 
C4 

Y (OP - O W - OS + OSW)
	

(56)

with an analogous formula for 0S . Note that the first three terms on the right of (56)
represent the one-dimensional contribution, corresponding to the QUICKEST scheme
(Leonard, 1979). The next term can be rewritten using the following identity

(OP - O S ) + (ONW - OW) _ (OW - OsW ) + (ONW - 20W + OSW)

4	 2	 4

+ (OP - O W - O S + OSW)	
(57)4
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in which case, the latter two terms on the right can be combined with the corresponding
terms in (56), giving

C2)

ow = OLIN - 2 GRADNW - (1 6 cx) CURVNW

- c '' GRADTW
2

-	 [(1 - cy ) CURVTW + (1 - cs ) TWISTW]	
(58)

where, as seen from (56), ¢L,N represents linear interpolation across the west face,
GRADNW is the normal-gradient term, CURVNW represents the upwind-biased normal-
curvature term (depending on the sign of cj, GRADTW is the transverse-gradient term
appearing earlier in lower-order formulae (depending on the signs of both c x and cy),
CURVTW is the upwind-biased transverse-curvature term (depending on the sign of cj, and
TWISTW is a cross-difference or "twist" term (again depending on the signs of both
velocity components at the face). Of course, the south-face value has an entirely analogous
formula that can be easily derived by simple permutation of node-values.

Figure 12 shows the results of the standard test-problem using this uniformly third-
order polynomial interpolation algorithm (UTOPIA). Clearly, there has been a significant
improvement in performance, as compared with lower-order schemes. Isotropy is very good
and peak resolution is reasonable, the only significant problem being the appearance of
(relatively small) negative values in the out-skirts of the main profile region. In some cases,
undershoots of this kind are merely an inconvenience. However, some transported variables
may need to be kept strictly non-negative for both physical and (more importantly) stability
reasons. In such cases, lack of positivity preservation could cause serious problems.
UTOPIA's behaviour is relatively insensitive to stream-to-grid angle, as seen in Figure 13
(6 = tan - '0.5 = 26.565°) and Figure 14 (6 = 0°). Perhaps surprisingly, the stability
region is restricted to the diamond-shaped figure: cx I + I cy I < 1, even though exact point-
to-point transfer again occurs at I cz I _ I cy I = 1 (evidently, these are isolated stable points).

For comparison, Figure 15 shows 45°-advection results using the (theoretically
unstable) one-dimensional QUICKEST scheme in each coordinate direction separately; i.e.,
dropping the GRADT-, CURVT-, and TWIST-terms in (58). Such a two-dimensional advec-
tion scheme, together with standard second-order central differencing for diffusion, has been
used for many years by Davis and Moore (1982, 1985) and co-workers. Once again, one
sees considerable anisotropic distortion, although phase error is lower than that of second-
order methods. For pure advection, this method is also theoretically unstable, unless the
flow is exactly aligned with the grid. It is perhaps of interest to look at a "quasi-third-
order" scheme in which face-values are given by the one-dimensional QUICKEST formulae,
together with only the GRADT terms (i.e., omitting transverse curvature and twist terms,
in order to effect some economisation). The 45 °-advection results for this scheme are shown
in Figure 16. Although much better than the uniformly second-order method, Figure 9 (in
terms of phase error), or Davis and Moore's method (in terms of grid-orientation distortion),
it is not immediately clear whether or not the savings incurred by algorithmic simplification
might be more than offset by deterioration of the simulation. In other words, to achieve a
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given accuracy it might be necessary to refine the grid using the "quasi-third-order" scheme
to a point where it is actually more expensive, overall, than using UTOPIA on the original
grid. This question can be answered by performing a series of grid-refinement studies and
comparing the relative computational efficiency of each scheme, as done for steady-state
flow, for example, by Leonard and Mokhtari (1990). A preliminary grid-refinement study
of this kind is reported in Appendix 3, where it is shown that the uniformly third-order
UTOPIA scheme is indeed significantly more efficient than the "quasi-third-order" scheme
(which, in fact, is only second-order accurate). The stability region for the "quasi-third-
order" method is the full square: (1- I cs 1) (1- I cy I) >_ 0.

The advective-characteristic-tracking idea implied by (27) could, of course, be applied
to uniformly higher-order interpolation methods. However, above third-order, algorithmic
complexity increases rapidly, especially in terms of additional transverse and other mixed
cross-difference terms. One strategy that appears to give quite good results without undue
algorithmic complexity is to keep all third-order transverse and cross terms but expand the
computational stencil for each advected face-value only in the normal direction. In other
words, the one-dimensional contribution is expanded to higher order while keeping only
third-order additional terms. For example, for the west face

^w = 0w(higher-order 1D) - c2 GRADTW

4 [(1 - cy )CURVTW + (1 - cs )TWISTWI	 (59)

This procedure has been explored by Leonard and Niknafs (1989), and appears to give good
resolution and isotropy. Computational efficiency can be greatly enhanced by using an
adaptive-stencil-expansion strategy; i.e., UTOPIA is used in smooth regions, whereas in
regions containing large spatial gradients (or strong changes in gradient), the algorithm
automatically extends the one-dimensional contribution to higher order on the basis of some
non-smoothness monitor. This is highly cost-effective because the (more expensive) wider
stencil is used only in isolated narrow (steep-gradient or high-curvature) regions involving
a relatively small number of grid points.

The main problem with multidimensional, collocated polynomial methods (above first
order) is that they are not inherently positivity preserving. This is also true, of course, in
the one-dimensional case. For a given continuous profile, higher-order methods are better
in this respect, but for near-discontinuities, any polynomial scheme will generate spurious
unphysical overshoots and undershoots, which may feed back and totally disrupt the solution.
This phenomenon has been demonstrated for one-dimensional scalar advection (up to ninth-
order) by Leonard (1991). In one dimension, simple flux-limiting strategies can be devised
to guarantee monotonicity preservation. The two-dimensional extension of these ideas
appears to be much more difficult. Some flux limiters (such as one-dimensional TVD
conditions applied coordinate-wise) appear to be sufficient for maintaining positivity under
some (rather restrictive) conditions, but tend to generate strong grid-dependent distortion.
Some progress in devising truly multidimensional (and less shape-distorting) flux limiters
has, however, been made. This is discussed in the next section.
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MULTIDIMENSIONAL FLUX-LIMITERS

Before tackling the multidimensional case, it is instructive to review the concepts of flux
limiters for one-dimensional scalar advection. In this case, the model equation is

	

ao 
+ u 

ao = 0	 (60)
at	 ax

where u is a (positive) constant. An explicit single forward time-step, control-volume update
formula for this equation can be written in compass-point notation as

OP+ = Op + CW)" _ 0,)	 (61)

referring to west and east "effective" face-values (Leonard, 1991), where c = uAt1h is the
Courant number. It is convenient to introduce a "generic" upwind-biased stencil. For
example, near any given control-volume face (f), define upwind (U), downwind (D) and
central (C) node values (on the basis of the sign of u) as shown in Figure 17(a). Now define
a locally normalised variable

	

O(x) - ^U	 (62)
4) n 	

n 
_	

U

so that, in particular, U = 0 and ^D = 1. Figure 17(b) shows the corresponding ^, node-
value and the normalised face-value, Of.

In one-dimensional flows, the main problem associated with maintaining monotonicity
occurs when ^p (_ ^U) has a small (positive) value. If the interpolated Of value is too high,
there will be too much flux advected out of the downwind face of the control-volume centred
at C, and + (_ ^n 1 ) may be drawn down below zero, thereby destroying monotonicity.
A different interpolation could avoid this problem by predicting a smaller Of value. This
is shown schematically in Figure 18, where a parabolic interpolation (a) for the face-value,
of , is compared with an exponential interpolation (b), for the same ^U value. Over a time-
step At, it is clear that the advective outflux predicted by case (a) would be larger than that
of case (b). In order to derive the limiting conditions, assume first that Of lies between U

and 1

	

^U !!^ Of < 1	 (63)

consistent with local interpolative monotonicity. Now consider (61) written in terms of
normalised variables, and require the updated normalised value not to be negative

	

O-p + C (0,,, 
_ 

`Ne)	 j 0	 (64)

The situation is shown schematically in Figure 19. Referring to (63), written for the
upstream (west) face, the worst-case (smallest) value for ^W would be zero. From (64), this
generates the condition
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< < op	 (65)
C

or, in general for any face, using the generic stencil of Figure 17,

<_	 ^C	 for 0 <_	 <_ 1	 (66)
Of	 c

One also needs to to consider suppression of overshoots when ^p (_ ^ c in Figure 18)
is slightly less than 1, for example. In this case, conditions may need to be imposed on the
upstream-face influx to keep it small enough so that the updated ^* does not exceed 1. But
(63) is sufficient to avoid this because the largest 0,y -value is O,,, and this is also the
smallest ^,-value, so that ^P can never overshoot its adjacent downstream value (at very
worst, it remains constant over a particular time-step). Thus (63) and (66) taken together
are sufficient to guarantee monotonicity-preservation (i.e., suppression of both overshoots
and undershoots) in the case of one-dimensional advection at constant velocity; and this has
been borne out by numerical experiments (Leonard, 1991). Figure 20 summarises these
"universal" limiter constraints for the monotonic range, 0 <_ ^' <_ 1. In the non-
monotonic range, several strategies are possible, one of the simplest being to set

	

(kf 	nc	 for ^ c < 0 or ^ n > 1	 (67)

this is also shown in Figure 20. The universal limiter is the basis for a number of higher-
order, so-called "ULTIMATE", one-dimensional advection schemes developed by Leonard
(1991). The acronym stands for "universal limiter for transient interpolation modelling of
the advective transport equations."

The flux-limiter constraints used by total-variation-diminishing (TVD) schemes are
rather more restrictive than those shown in Figure 20. First, it should be noted that TVD
schemes use second-order time averaging. Referring to Figure 21, this means that the face-
value is assumed to vary linearly with time, so that

O — 
0 n 

_ 1 V 

u0t + O(Ot 2) = 0; — 1 0; — 0C 1 u0t

Of 	 f	 x 2	 Ox/ 2 / 2

e) 0f + c o,
	

(68)

recalling that of (without a superscript) denotes the time-average over At, whereas Of is the
interpolated face-value at time-level n. As explained by Leonard and Mokhtari (1990), the
TVD flux-limiter constraints summarised, for example, by Sweby (1984) can be written in
terms of' as

and

^f <_ 2 n for 0 <_ C <_ 0.5 (69)

f <_ 1 for 0.5 < n̂ < 1 (70)



^f = ^c

for 0 <_ ^nn < 1 (71)

for s < 0	 ors > 1 (72)
and
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with

These are shown diagrammatically in Figure 22 (note that the vertical axis in this figure is
¢f, not Of). In order to compare with Figure 20 (where the ordinate is Of , not ^,), it is
necessary to rewrite the TVD constraints (69)-(72) in terms of Of , using (68). This gives

Of < (2 - c) ^nc	 for 0 C <_ 0.5	 (73)

and

Of < 1 + c ( C - 1)
	

for 0.5 < ^nn <_ 1	 (74)

with the other constraints remaining the same. The corresponding diagram is shown in
Figure 23, where the slopes of the upper constraints are given by

S, = 2 - c	 (75)

and

S2 = c	 (76)

These should be compared with S, = 11c and S2 = 0 shown in Figure 20 for the (less-
restrictive) universal limiter. The relationships between the upper-constraint slopes of
ULTIMATE and TVD schemes are shown in Figure 24 as functions of Courant number,
between c = 0 and 1.

In order to develop a two-dimensional positivity-preserving (PP) algorithm, one might
try to use one-dimensional TVD or ULTIMATE fluxes in each coordinate direction sepa-
rately (with c replaced by the local normal component Courant number at each face). For
example, the TVD (CLAM) scheme of van Leer (1974) can be described in terms of 	 by

f = 2 C - (^ C ) z	 for 0 <_ n <_ 1	 (77)

with f = C elsewhere. This is shown in Figure 25. Note how the slope of the parabolic
curve is tangent to the TVD constraints as p	0, and 1	 Also note thatf = 0.75 when

C = 0.5 , making this a second-order scheme in "smooth" regions ( C -> 0.5) . Figure 26
shows the 2D results (for cz = cy = 0.25 and 0 = 45') of using the 1D CLAM scheme
coordinate-wise. Although the scheme is evidently positivity preserving, there is con-
siderable grid-orientation-dependent distortion, with cross-wind elongation and a tendency
towards flattening along grid lines, producing a diamond-shaped distortion of the initially
circular profile. The cross-wind elongation is primarily due to the lack of GRADT-terms.
If these terms are included (before limiting), cross-wind elongation is reduced but the profile
still tends to "square-up" along grid-lines. Also, as shown theoretically below, there are
rather severe PP restrictions on the allowable component Courant-number ranges.

Figure 27 shows results of using the one-dimensional third-order ULTIMATE
QUICKEST scheme in each coordinate direction separately. In addition to cross-wind
elongation (due primarily to the lack of cross-terms), it can be seen that this scheme is not
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positivity preserving. There is no point in trying to improve isotropy because, as is shown
theoretically below, using the one-dimensional universal limiter coordinate-wise cannot
guarantee positivity. The following analysis is based on a suggestion by Bull (personal
communication, 1990). Referring to Figure 28, consider a normalised monotonic "front"
passing through a control volume so that post-frontal node-values are essentially zero, with
pre-frontal values close to unity. At the time indicated, the positions of the leading-edge
(LE) and trailing-edge (TE) of the front are such that the normalised node-value at the
control-volume center is a small positive value, ^p = E . This is the analogue of the one-
dimensional case shown in Figure 18. If outfluxes significantly exceed influxes, the central
node-value at the next time-level could be drawn down to negative values, thus destroying
positivity. To avoid this, the following condition would be required for the updated
variable, Op

f P+ = E + Cx (^. - ^,,) + Cy (^, - ^j ^ 0	 (78)

For the situation illustrated (cx , cy > 0), the worst-case condition corresponds to ^W and 0-S
both being as small as possible (= 0) and ^, and ^n both as large as possible. According
to Figure 20 (with ^' = Z), using the individual normal component Courant numbers, the
universal-limiter constraints imply

O,(large)= c	 (79)

x

and

Ojlarge) = E	 (80)
CY

Thus (78) becomes

^P = E + cx (0 - ^) + cy (0 - C) 	 (81)
C.	 y

thereby violating the PP inequality. This means that the one-dimensional universal limiter
used coordinate-wise cannot guarantee multidimensional positivity preservation.

On the other hand, consider the TVD constraints of Figure 23. In this case (with
w and 0 , still both equal to zero),

and

0,(large) _	 (2 - cx ) E (82)

( nJlarge) _	 (2 - cy ) E (83)

Hence, the updated central node-value now becomes

^ * = E + cx [0 - (2 - cx ) E + cy [0 - (2 - cy) E 1

= E [1 - cx (2 - cx ) - Cy (2 - cy )]	 (84)
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This expression is non-negative only if

	

(Cx - 1)2 + (Cy - 1)Z >_ 1 for 0 	<_ (Cx , Cy ) 5 1	 (85)

This represents a rather severe restriction on the allowable ranges of the component Courant
numbers, as seen by the circular arcs in Figure 29. In particular, for 0 = 45°, cs and cy
must both be less than (1 - 1/2) -= 0.293. Even more restrictive conditions are required
in three dimensions (see Appendix 4).

First Multidimensional Limiter
In order to devise less restrictive positivity-preserving conditions, return attention again

to Figure 28 and Equation (78). Assume that the slope S, in Figure 20 is to be found in
order to satisfy (78). Also assume that (63) still holds, so there can be no (normalised)
overshoots (because, at least for a solenoidal velocity field, total influx cannot then exceed
total outflux, for the same reasons as in the one-dimensional case) and, therefore, the only
condition that needs to be considered is the avoidance of undershoots. This means that,
instead of (79) and (80), the worst-case outflow face-values are written in terms of the (as
yet unknown) slopes, S; and Sl', as

	

- eJlarge) = S; E	 (86)

and

	

0,,(large) = S; E	 (87)

where (for the moment) it is assumed that S; and S; may be different but related by
symmetry according to

	

S; = S,(cx , cy)	 (88)

and

	

S; = S I (Cy , Cs)	 (89)

Substitution into (78) gives

	

^ + = E + cs (0 - S; E) + cy (0	 - S; E) >_ 0	 (90)

resulting in the condition

	

1 - cz S; -Cy S; >	 0	 (91)

The most general solution of this inequality would require

i <	 .f(Cs, cy)	
=	 i(	

y)	
92S	

Cz f(Cx, Cy ) + Cy f(Cy, CX)	
S C X^ C	 ( )

and

	

S; _< S 1 (cy , Cx)	 (93)

where f is a (not necessarily symmetrical) function of cz and cy , to be chosen. Note that if
cy = 0 and f (0, cz ) is finite, then
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1	 (94)
Cs

consistent with the one-dimensional formula. Also, at 0 = 45°,

S, (C' c) _ 1	 (95)
2c

This means, in particular, that at cs = cY = 0.5,

	

S,(0.5, 0.5) = 1	 (96)

regardless of the form of f. If f is in fact symmetrical, then it cancels in (92) leaving

s, (C." CY ) = s; = S, = 

I CJ 1 I I	 (97)Cz + CY

where absolute values have been included to generalise to cases involving negative velocity
components. This is the least restrictive (i.e., largest) symmetric form satisfying (91). Less
restrictive non-symmetrical forms might be found by specifying the functional form of f.
However, this strategy will not be pursued here. Of course, S, cannot be less than one, as
this would violate the left-hand inequality of (63). Figure 30 shows contour lines of S,
within the allowable region (S, >_ 1). Results of using this two-dimensional limiter in
conjunction with the QUICKEST scheme in each coordinate direction are shown in Figure
31 for 0 = 45°. The simulation is positivity preserving, but again there is considerable
cross-wind elongation due to lack of cross-terms, together with steepening in the flow
direction and concomitant flattening of the peak.

One could, of course, restore the cross-terms missing from the QUICKEST scheme and
apply the limiter, (97), to the fully-third order UTOPIA scheme. Results are shown in
Figure 32 for cs = cY = 0.25. The diamond-shaped distortion is quite disappointing; as
advection proceeds further, the profile tends to square-up along grid lines. Apparently, the
limiter represented by (97) is overly restrictive. For example, (97) shows that the slope of
the limiter becomes 1 along the boundary lines

cx I + I cy I	 = 1	 (98)

seen in Figure 30. This means that, for Courant numbers in ranges near these boundaries,
the simulation is approaching the highly artificially diffusive and anisotropic first-order
scheme given by (19), with results similar to those shown in Figure 4.
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Second Multidimensional Limiter
Some progress toward better isotropy can be made by incorporating the transverse-

gradient terms after the limiting step. Assume that ;V0 is a hi^her-order face-value not
including GRADT terms. For example, the west-face UTOPIA Of would be given by (58),
omitting the GRADTW term; i.e.,

2

o° _ OLIN - 2 GRADNW - (1 6 cx ) CURVNW

- 4 1 - Cy ) CURVTW + (1 - cs ) TWISTW]	 (99)

Now assume that this temporary face value, written in normalised form asf, is
constrained, near ^n — 0,, by

^C	 ^f	 OREM	 sl ^C	
(100)

where S, remains to be found in order to satisfy PP conditions. Working in terms of
unnormalised variables, the right-hand reference value can be written

O REF1	 OU + S 1 (O C - 00	
(101)

using the generic-stencil notation of Figure 17.
Referring to Figure 11, the update algorithm in unnormalised variables can be written

(for constant velocity) as

(^p = (^p + cX (0W - 0 e ) + Cy (0 , - 0n)	
(102)

Now write the actual face-values as the algebraic sum of the temporary values and the
appropriate transverse-gradient terms. For c x and cy both positive, these take the form

0 µ - ow	
2 

(O W - OsW)	 (103)

oe _ 2 (op _ 0s)	 (104)

0, - 0S - 2 (Os - OsW)	
(105)

0"	 on ^ (Op _ OW)	
(106)

Substitution into (102) gives

` P+ = O P + C., Cy (op — O W — Os + osW) + CX K — Oee) + Cy wo — 0n")	
(107)



Cx f (Cx ' Cy) + Cy f (Cy , Cx )
i x^	 y
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Consider first, non-negative node-values increasing in the flow direction, with 4P quite
small. The aim is to avoid the updated OP becoming negative. Once again consider worst-
case small influxes and large outfluxes. If ow and os are small (but non-negative), then the
left-hand inequality of (100) gives the worst-case inflow values as

°„,(small) _ ¢w

and

¢°(small) _ Os

The largest outflow values need to be constrained by the slope S,
variables, referring to (101),

¢°(large) _ Ow + Si (OP - Ow)

(108)

(109)

In terms of unnormalised

(110)

and

C(large) _ Os + Si (O P - (ks)
	 (111)

where again (for the moment) S; and S; are assumed to be possibly different but symmet-
rically related. Substitution of (108)-(111) into (107) gives

0P = op [1 + Cx Cy - Cs S, - Cy S Y + C. Cy 0sw

+ Cx (S, - Cy ) ow + Cy (Si - Cx) 0s	 (112)

and this is required to be non-negative for arbitrary, non-negative O p , 0sw, ow, and Os .
Thus the coefficients of each of these node-values must all be non-negative. An upper bound
on Si and S; is obtained by setting the coefficient of OP to zero, the corresponding
conditions for ow and Os providing lower bounds. The upper bound is chosen, as this yields
the least restrictive limiter. This implies

S x <	 (1 + cx Cy) f(Cx , Cy)	 = S (c c)	 (113)

and, by symmetry,

S, c Sl(cy, Cx)	
(114)

where, again, f is some (in general not necessarily symmetrical) function to be specified.
As before, this S, is consistent with the one-dimensional case; but at 45'

S,(c, c) = 1 
+ C2	

(115)

which is now always greater than (or equal to) 1.
Once again, if f is a symmetric function of cx and cy , the (only) symmetrical form of

S, becomes
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S; = sly < S, _ (1 
+ cx 

cy)	 (116)
(cx + cy)

From (112) this gives

>_ c c	 Cx( 1 - cy)	 + cy (1 - Cx)	 (117)^P	 x y 0sw	 (cx + cy) 4>W	 (cy + cx) 0s

And since, for stability, J cx j and I cy l are both less than or equal to 1, the updated node-
value is indeed non-negative. Unsymmetrical forms could perhaps lead to somewhat less
restrictive conditions, but these are not pursued here.

However, it turns out that (116) is not sufficient for giving PP results in general. One
must also consider (positive) node-values decreasing in the flow direction, as well. This will
require restrictions on f near 1_.  Specifically, assume that, in normalised-variable
notation, _118

^C	 ^f	 (kREF2	 1 + S2 C - 1)	 (	 )

near n _ 1	 In terms of unnormalised generic variables, (118) can be rewritten as

C	 ^f	 OREF2	 OD + S2 (OC - OD)	
(1 1 9)

using the notation of Figure 17. The inequality reversal is due to the negative normalising
denominator in this case. In a decreasing region, worst-case conditions (tending to make the
control-volume central node-value negative) imply

	

°(large) _ -^P	(120)

and

O°(large) _ op	 (121)

as well. The smallest allowable inflow face-values, according to (119), are

00 (small) _ op + SZ (O H, - 0P)	 (122)

and

°(small) _ OP + Sz (0S - 0P)	 (123)

where

SZ = S2 (cx , cy )	 (124)

and, by symmetry,

SZ = S2 (cy , cx)	 (125)

Substitution of (120)-(123) into (107) gives
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^P = q5p( l + Cscy — C S2 — Cy S2) + Cs Cy O Sw

+ Cs (S2 — Cy ) Ow + Cy (S2 — Cx) OS	 (126)

Choosing the smallest (and therefore least restrictive) S 2 's as

S2 = cy	 (127)

and

SZ = cx	 (128)

eliminates the 0, and os terms and results in

OP = Op (1 - cx cy ) + cx cy -^Sw	
(129)

Since this represents a weighted linear interpolation between the two (nonnegative) node-
values, 0sw and Op, the result (for I cs cy I <_ 1) is also nonnegative, approaching Op for small
I cs cy l and equalling Osw for I cs cy l = 1 (consistent with exact point-to-point transfer across
the grid diagonal).

The two-dimensional PP limiter restrictions on 0;  are summarised in Figure 33, where,
for a constant velocity and corresponding component Courant numbers, cX and cy , allowing
for positive or negative velocities,

S	 =	 I + I
cs

cyl ( 130IcJ + Icyl	 )

S_ = I Cy I,	 SZ= 	 IcXI	 (131)

Contour plots of (130) are shown in Figure 34. As seen from the contours in Figure 34,
there is a rather large region where S, is only slightly greater than 1 (e.g., see the large
region between the contours S, = 1.25 and S, = 1); however, this is still less restrictive than
the first two-dimensional limiter, given by (97).

Figures 35 through 39 show results of using the limiter given by (130) and (131) in
combination with the UTOPIA scheme (i.e., with transverse-gradient terms restored after
limiting but all other terms included beforehand). In Figure 35, cx = cy = 0.25 (6 = 45');
in Figure 36, cs = 0.25 and cy = cz 12 (6 = 26.565°); in Figure 37, cs = 0.25 and
cy = cs 13 (6 = 18.435°); and in Figure 38, c, = 0.5, cy = 0 (6 = 0°). These results are
seen to be generally much better than those using the first two-dimensional limiter given by
(97). However, at cs = cy = 0.5 (6 = 45°) shown in Figure 39, there appears to be some-
what more distortion. In this case, the limiter slopes are S, = 1.25 and S 2 = 0. 5, repre-
senting rather restrictive constraints. At larger Courant number values the simulation
becomes noticeably more diffusive.

and
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Extension to Variable Velocity
The two-dimensional flux-limiters developed so far have been based on a uniform

advecting velocity field at an angle to the grid. Clearly, this is too restrictive to be of use
in practical calculations involving variable velocity fields. However, the same principles can
be generalised to variable solenoidal velocity fields satisfying the constant-density continuity
equation

v•V = 0	 (132)

For simplicity, only the first two-dimensional limiter will be extended here. The extension
of the second limiter is more complicated and will be taken up in a future report.

Consider the update equation for variable velocity using conventional compass-point
notation at each face

where, by continuity

0P =+c	 -c ^ +c C -c ^	 (133)
P	 zw w	 ze a	 ys s	 yn n

CXw — (se + CyS - Cyn = 0	 (134)

Four separate cases need to be considered:
(i) Two inflows on adjacent faces together with outflows on the other faces. This

is represented by all c's being positive, for example.
(ii) One inflow and three outflows.
(iii) Three inflows and one outflow.
(iv) Inflows on opposite faces and outflows on the remaining faces.

These are sketched in Figure 40. In Case (i), Figure 40(a), the worst-case update becomes,
in terms of unnormalised variables,

(^P — op + Cxw O w — Cze [4w + S, (O P — 00] + CyS 0S — Cyn [O S + S, (OP — O S )]	 (135)

or

0P — op [1 — S, (Cze + Cyn )] + `E'w [Czw + Cz' (Si — I)] + 0S [cys + Cyn (S1 — 1 ),	 (136)

Choosing

S, =	 1	 (137)
C +C
zt	 yn

gives positivity-preserving results. This is the appropriate limiter slope for use on both the
east and north faces—i.e., on the outflow faces for the CV cell under consideration. For the
conditions of Case (i), but for other combinations of signs of the Courant number
components, (137) can be immediately generalised, for two outflowing faces, to

1
S, =	 (138)

I Cnl + ICnutl2

using an obvious notation.
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For Case (ii) shown in Figure 40(b), the worst-case update becomes

OP = OP + c. O w - cxt [Ow + S1 (OP - O w)]

Cy., I [ON + S1 (OP — ON)] — Cyn [OS + S1 (OP — O S)]	 (139)

or	

{{,
OP = WP [ l - S, (Cxe + c, + I cys I )1 + O w kCx + cx' (S, - 0 1

+ O S [cyn (Sl - 1 )] + ON [ I Cys I (S, - 1

In this case, noting that cx, and cyn are both positive,

Sl =	 1	 ^ = 1 )	 (141)

C + C + I cse	 yn	 ys I	 Cxw

is the appropriate limiter slope for each of the three outflow face-values. Again, this can be
generalised for three outflowing faces as

1
= (	 )I 

cn I 
1 + 

I cn 
12 + I 

Cn 13	
142

It is not difficult to see that similar formulae would apply in Cases (iii) and (iv).
In summary, the limiter slope for any face is computed as follows:
(i) Identify the control-volume cell for which the face in question is an outflow

face.

(ii) Take the S, slope for that face as

1

	

S, _	
out	

(143)
I C 

n

where the sum is over all outflow faces for the identified CV cell (including the
face in question).

A similar strategy can easily be devised for three-dimensional flow in an obvious way.
This type of flux-limiter has been tested for scalar advection in 2D and 3D solenoidal
velocity fields. As expected, results are positivity-preserving to machine accuracy, even
when discontinuities are present in the initial conditions. Details will be given in a
subsequent report.
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CONCLUSION

Advection is a key dynamical process in many areas of fluid dynamics. As computer power
has increased and the spatial resolution of CFD codes has improved, so the need for more
accurate numerical advection schemes has increased in significance. This is because the
higher spatial resolution allows (in principle) the representation of sharper gradients and
changes in gradient. More detailed resolution of advective transport means that less
empiricism has to be used in modelling important fluid-dynamic processes. Unfortunately,
as is well known, traditional advection methods, such as the space-time-centred leap-frog
scheme, do not perform well under highly advective conditions, often exhibiting large
regions of spurious numerical oscillations. Such behaviour may be manifested in CFD
simulations as, for example, negative values of density concentrations, or other unphysical
phenomena. Numerically dispersive advection schemes of this type may even generate a
kind of "numerical turbulence" that, in turn, can lead to the erroneous prediction of
anomalous mixing processes. These features may interact with the physical parameter-
izations within the models and lead to significant degradation of numerical simulations and
forecasts.

Two aspects of accurate advective modelling have been addressed in the present report.
The first concerns the problem of anisotropic distortion—i.e., the dependence of the solution
on grid orientation. Methods based on using one-dimensional formulae in each coordinate
direction separately show strong anisotropic distortion at non-zero flow-to-grid angles. The
introduction of transverse-gradient cross-terms into the advective fluxes greatly alleviates this
problem in second-order methods. However, the multidimensional, uniformly second-order
method (the generalised conservative Lax-Wendroff scheme) is still too numerically
dispersive for use as the basis for a good CFD advection code. Fortunately, the techniques
used to derive this method generalise to higher order. As in the case of one-dimensional
advection, the multidimensional, uniformly third-order, polynomial interpolation algorithm
(UTOPIA) possesses several desirable properties. The conservative, control-volume
formulation is relatively straight-forward algorithmically, isotropy appears to be excellent,
and phase error is low. Because of the flux-based, conservative formulation, "mass" is
conserved (to machine accuracy). The only drawback (as with all collocated polynomial
schemes above first order) is that it is not inherently positivity-preserving.

In order to produce a multidimensional, positivity-preserving advection scheme, one
might consider using well-known one-dimensional TVD flux-limiters in each coordinate
direction. However, this approach has been shown here to have two shortcomings: the
allowable Courant-number range is very limited, and results are again highly grid-dependent,
showing a strong "squaring-off" distortion along grid-lines. The anisotropy appears to be
due partly to the use of one-dimensional limiter formulae (which are inherently grid-
orientation dependent) and partly to the fact that TVD limiters, in general, are overly
restrictive, tending to add (coordinate-wise) artificial diffusion locally, in order to suppress
potential oscillations.

One of the main focuses of the current work has been to generalise the less-restrictive
universal limiter concepts originally developed for one-dimensional flows by Leonard (1991).
The one-dimensional universal limiter applied coordinate-wise in two dimensions has been
shown theoretically not to preserve positivity. However, the analysis used in deriving this
result also suggests two different multidimensional generalisations that are symmetric with
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respect to x- and y-component Courant numbers (and are consistent with the one-dimensional
case). Unfortunately, the first multidimensional limiter, (97), reintroduces considerable
anisotropic distortion. The second multidimensional limiter, given by (130) and (131), is
based on adding the transverse-gradient terms after the limiting process. In this way,
reasonably good isotropy is maintained when applied to an inherently isotropic advection
scheme such as UTOPIA. Fortunately, both the advection scheme itself and the limiter con-
straints can be generalised in a straight-forward manner to three dimensions (see Appendix
1 and Appendix 5, respectively). Appendix 2 also outlines the inclusion of physical diffusion
terms to a consistent order, and a simple upwinding strategy designed to avoid IF statements
is sketched in Appendix 6.

The multidimensional third-order advection scheme and the generalised limiter
constraints were initially derived on the basis of uni-directional constant-velocity linear
scalar advection. Similar principles have been applied in the case of spatially varying
solenoidal velocity fields using the first multidimensional limiter. Generalisation of the
second multidimensional limiter to variable velocity fields is more complicated, and will be
discussed elsewhere. The main aim of this research project has been to advance the state
of the art of advection modelling beyond standard techniques (generally involving gross
anisotropic distortion and potentially disastrous numerical dispersion). And, to the extent
that this has been achieved, highly advective modelling should be enhanced. This will
become apparent when the current strategy has been implemented in production codes and
applied to real fluid-dynamic processes.
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APPENDIX 1

THREE-DIMENSIONAL FORMULAE

In three dimensions, the computational molecule for third-order upwinding consists of the
twenty nodes shown in Figure A.1.1, where the notation refers to the conventional compass-
points (N, S, E, W) together with top (T) and bottom (B) levels. Note the upwind bias,
assuming that the Courant number components, cX , c,, and cZ are all positive. Taking local
coordinates centered at P, the 0-value at time-level n can be written

Cl + C2S + C
3 ^2 + 

C4 S3

• C5 ^ + C6 q 2 + C7 _q

• Cg p + C9 Y2 + CIO y.3

+ Cll S 77 + C12 ^ 712 + C13 ^2 77

• C14 J + C15 ^2 + C16112

• C17 	 + C18 ^2 + C19 ^2 ^ + C2o ^ 71
	 (A. 1. 1)

This should be compared with (44); note the obvious similarity in structure, but also note
the appearance of the triple-product C20-term. Because of the similarity with the two-
dimensional case, evaluation of the coefficients by collocation follows a predictable pattern:

Cl = op	 (A.1.2)

C = 
0E - 0 w _ 0E - 3^P + 3^w Ow	 (A.1.3)

2	 2 Ax	 6 Ax

C3 	
OE - 20P 

+ OW
	

(A.1.4)
3	 2&X2

	

C4 	
0E - 30, + 30, - Ow	

(A.(A.1.5)

	

4	
6Ax3

C = ON - 0, - ON - 30P + 30, - 0SS	 (A.1.6)
5	 2 Ay	 6 Ay

	

C6 	
ON - 20P + Os
	 (A.1.7)

	

6	 2Ay2
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C7 =	 IhN
— 30P + 30 s — ass (A.1.8)

6 0y 3

Cs =	 OT - OB - OT - 34P + 30B - OBB (A.1.9)
2 0z 6 Oz

C	 =9
^T — 20P

 + O
B (A.1.10)

2Az 2

CIO =	 OT 0P	 3 O - ^BB (A.1.11)
6023

C=	 (oE - OP) - (OSE - OS) + (O N - ONO - (OP - OW) (A. 1. 12)
I I

2 Ox 0y

C	 =12
(0N - Ow) - 2 (OP - O W) + (oS - OSW) (A.1.13)

2 0x Ay 2

C	 =13
(oE — ^SE) — 2 (0P — ^s) + (4) — (^sw) (A.1.14)

2AX2 'Ay

C	 =	 (OEC14 - 
^P) - (^BE - OB)	 + (''T - 

O TW ) - (^P - OW) (A. 1.15)
2 Ay 0z

C	 =Is
(0T — 0 T — 2 (OP — O w) + (OB - `+'BW) (A. 1.16)

20y AZ 

C	 =16
(ON - O BN) - 2 (OP - OB) + (OS - OBS) (A. 1.17)

2Qy2 Az

C	 -	
(oE - `NP) - (OBS - OB) + (OT - OTW) - (OP - OW) (A. 1. 18)

17
2 Oz Ox

C	 =I8
(OE - OBE)

- 2 (`''P - O B ) + (4 W - 4BW) (A.1.19)
2AzAX 2



(OT - OTO - 2(O P - Ow) + (OB - `+'BW)

2AZ Z OX
C19

(A.1.20)
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(OP - O W - O S + O SW) - (O B - OBW - OBS + OBSW)
zo	 AX Dy Az

In terms of a three-dimensional velocity, V = (u, v, w), the advective back-tracking
formula can be written

0P = 0"(-UAt, -VAt, -WAt)	 (A.1.22)

When this and the above C-values are substituted into (A.1.1), the resulting formula can be
rearranged into a flux-based, conservative, control-volume, single time-step, explicit update
algorithm of the form

0P	 =	 0, + FLUXW(i, j, k) + FLUXS(i, j, k) + FLUXB(i, j, k)

- FLUXW(i+l, j, k) - FLUXS(i, j+l, k) - FLUXB(i, j, k+l)	 (A.1.23)

where, for example,

FLUXW(i, j, k) = cx 0,y (A.1.24)

and so on. By analogy with the two-dimensional case it is not difficult to show that the
advected west face-value, for example, is given by

cs	 (1 - C2)

	

O w = OLIN - 2 GRADNW -	 6 CURVNW

- 
cy 

GRDTYW - cz GRDTZW
2	 2

4 [(1 - cy ) CRVTYW + (1 - c., ) TWSTYWI

4 [(1 - cZ ) CRVTZW + (1 - cz ) TWSTZW]

	

+ c3 Z TWSYZW	 (A.1.25)

Where OLIN is the linear interpolation across the west face

C= (A. 1.21)

('^P + OW)	 (A. 1.26)
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the normal gradient is given by

GRADNW = OP - ¢ w	(A.1.27)

and the upwind-biased normal curvature is

CURVNW = OP - 20w + Oww	
(A. 1.28)

just as in the one-dimensional formula. The two (two-dimensional) upwind-biased trans-
verse-gradient terms are given by

GRDTYW = O w - -^sw	 (A.1.29)

and

GRDTZW = O w - OBw	
(A. 1.30)

The transverse-curvature and (x, y)- and (x, z)-twist terms also have the same (upwind-biased)
form as their two-dimensional counterparts

CRVTYW = Ovw - 2 O + Osw	
(A.1.31)

CRVTZW = O Tw - 20w + OBw	
(A.1.32)

TWSTYW = OP - Os - Ow + Osw	 (A. 1.33)

and

TWSTZW = OP - O B - O w + OBw	 (A.1.34)

Finally, the last term in (A.1.25) is a peculiarly three-dimensional term representing an
upwind-biased (y, z)-twist contribution

TWSYZW = (^w - Osw - OBw + OBSw	
(A. 1.35)

Figure A.1.2 shows the ten node-values involved in computing 0W (for cx , cy , cZ > 0). The
other face-values, 0, and `+'b , can be obtained by using a straight-forward permutation
process. However, this is not necessary, because a "generic" stencil can be used for any
control-volume face, determined by the signs of the individual local Courant number
components. This is outlined for the two-dimensional case in Appendix 6. The three-
dimensional extension is straight-forward.
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APPENDIX 2

INCLUSION OF DIFFUSION TERMS

Consider the advection-diffusion equation written in conservation form as

ao + 0 • (VO) = V . (DVO)	 (A.2.1)
at

A numerical update formula can be written in the form of (A.1.23) provided each flux con-
tains both advective and diffusive contributions. For example, the west-face flux is given
by

	

FLUXW(i, I, k ) = cx,v 0 ,v - asW a0) ox	 (A.2.2)
aW

introducing the diffusion parameter, ax,,, defined by

a	 = D
w At	

(A.2.3)
xw	

At 2

Similarly for the other faces. The task now is to estimate the face-value and face-gradient
appearing in (A.2.2). At third order (and above) one needs to consider the effect of diffu-
sion in estimating 0,, and, conversely, the effect of advection in estimating (aolax)w.

In order to assess these effects, consider the constant-coefficient one-dimensional
advection-diffusion model equation

	

ao _ _ u ao + D ago
	

(A.2.4)
at	 aX	 ax2

Now formally integrate this equation in time, from 0 to T. At the west face, for example,
this gives

2	 )

^ W(0) - f 
T 

f u a ) dr + f ^D a ') dr	
(
A.2.5

ax w	 0	 aX Z W

The first integral on the right represents the variation of (^, v with time due to purely advective
effects (obtained by setting D = 0); the second integral represents the diffusive contribution.
The latter term is estimated simply as

f 
T 

(D ago ) dr = f T (D a2")n d7- = ^D a2„)n T	 (A.2.6)
0	 aX Z w	 0	 ax Z w	 ax, -

Averaging ( wJr) over r = 0 -> At, then leads to

^w = 0jadv) + ID ago )” At	 (A.2.7)
ax 2 W 2



34

where the first term is the purely advective contribution to the time-average and the second
term an estimate of the diffusive contribution. Equation (A.2.7) can be rewritten as

0 w = 0w(adv) + 2w CURV W	 (A.2.8)

where CURV„ is an appropriate second-difference. By equating CURVw with the upwind-
biased (normal) curvature term, the one-dimensional third-order time-averaged face-value
can be written

z
,/	 cxw GRADL - I (1 - cxw) - axw l CURVL	 (A.2.9)
O w 	 OLIN	

2	 l	 6	 2 J

Clearly, (A.2.7) can be generalised to two and three dimensions by writing for the west
face, say,

0w = 0 w(adv) + (DV z0)„, A2
z 	

(A.2.10)

This generalises (A.1.25) to the following form

C 2 	 l

0. = OLIN - 
C22w 

GRADNW - [ (1 
6 

cxw) - 'xw 
J 

CURVNW

CYw GRDTYW - CZw GRDTZW
2	 2

- [ 4 ( I - cyw) - 2w , CRVTYW - 4w (1 — Czw) TWSTYW

- [ 4 (1 - Czw) - 2
w l CRVTZW - 4w (1 -cxw) TWSTZW

+ cy 
3 

Zw TWSYZW	 (A.2.11)

For estimating the time-averaged normal gradient across a given face, refer first to the
one-dimensional case sketched in Figure A.2.1. In time At, the curved profile shown is
advected to the right; thus, the face-gradient is continuously changing with time according
to the linear relationship

1)w	 1	 /0 - 1 a Z )w ux'T + O(T2 )

The time-averaged gradient over At is therefore

(

a,^^	
_ (
	

— (824ln
u wAr

+ O(At2)
axwaxw 	 w 2

(A.2.12)

(A.2.13)



ao 
+ V • vo = DV20

at
(A.2.17)
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This can be rewritten as

	

(
) Ax -= GRADW - 2 CURV w	

(A.2.14)

ax w

where CURV w is an appropriate second-difference in the vicinity of the west face. Once
again it is convenient to use the upwind-biased curvature term, CURVW. In the one-
dimensional case the approximate gradient is therefore given by

(

a
xw

	

1 
Ax = GRADW - 2 CURVW	 (A.2.15)

ax 

In two and three dimensions, the normal gradient will vary with time due to twist terms, as
well. It is not hard to generalise (A.2.15) for the west face, for example, to give

( a^ '^

Ax = GRADNW - c2w CURVNW - C^w TWSTYW - C2w TWSTZW (A.2.16)
ax 

The total west-face flux is given by substituting (A.2.11) and (A.2.16) into (A.2.2).
For a model constant-coefficient form of the governing advection-diffusion equation

it is possible to derive an exact three-dimensional complex amplitude ratio, Gexe Use of
(A.2.11) and (A.2.16) and corresponding formulas for the other faces then produces an
algorithm whose G-expansion agrees with that of G^ xeC^ through all third-order terms in the
wave-number components. Specifically, consider a three-dimensional plane wave of the
form

(A.2.18)0 = A(t) exp(t k • x)

where the vector wave-number is given by

k= k i+ ky J+ kZ k

Substitution into (A.2.17) then gives

0 = A(0) exp[- k • k Dt] exp[i k • (x - Vt)]

Assume constant grid spacing, Ax = Ay = Az = h, and define

a =
DAt

h2

(A.2.19)

(A.2.20)

(A.2.21)

0 = kh	 (A.2.22)
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and

C = VAt	 (A.2.23)

Then the exact three-dimensional complex amplitude ratio is given by

	

GexacI = exp(-a d 2 ) exp[-c(c.6)]	 (A.2.24)

where e2 = B • B. Expanding real and imaginary parts gives

G,xe^^ = 1 -
 [(Y 62 + 2 

(C .
 0)2

+ 0, 2

84 + a 82 (c • 8) 2 + 1 (c • 8)4 + .. .
2	 2	 24

C-0 - La 
0 2 (c • B) + 

-6
	 • 0)3,

_ L	 z

	

a 04 (C . 6) + a 
92 (C . 0)3 +	 1 (C , e)5

2	 6 l	
T2_0_20	

l

+ , , ,	 i	
(A.2.25)

A von Neumann analysis of the generalised UTOPIA scheme, incorporating the effects of
diffusion on advection and vice versa, as described above, leads to

GUTOPIA — I — La 
02 +	 (C ' e)2 J + .. .

- l	 C • B - l a 
0 2 (C • 9) + 

I
(C • 0) 3 ] + ...	

(A.2.26)

thus matching Gaxect through all third-order terms in the 9-components.
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APPENDIX 3

GRID-REFINEMENT STUDIES

Some preliminary grid-refinement studies have been made for some of the schemes discussed
in this report. All of the tests are for an angle of 6 = tan 1 (1/2) = 26.525 0 , using Courant
numbers cs = 0.5 and cy = 0.25. The number of time-steps, N, is chosen so that the exact
solution would move 2 units in the x-direction and 1 unit in the y-direction. This means that

N =	
2	

(A.3.1)
cX h

In addition to the base case of h - ' = 31, the grid is refined to h - ' = 61, 121, and 241.
At each grid point, the final-time error is computed by subtracting the theoretically

exact value from the computed value

E i, i = ^5 i, i - O ex(x, ^ Y,)	 (A.3.2)

An L 1 global error diagnostic is also computed from

1/h 1/h

L 1 = h2 1: E I Ei, I	
(A.3.3)

i=1 j=1

The following tables show the total number of time-steps, N, the grid-refinement, h-',
the minimum nodal 0-value, the maximum nodal 0-value, the maximum (signed) error, the
L, error, the CPU time (on a CRAY-YMP, to the nearest second), and the computation time
relative to the 2D Lax-Wendroff scheme. The convergence rates for the maximum error and
the L, error are taken to the nearest integer.

Table A.3.1 2D Lax-Wendroff

N h-' O.in Omax Em.x L1 I CPU time I	 Rel. time

124 31 -1.13 x 10 -1 0.822 3.75 x 10' 3.09 x 10 -2 3 1
244 61 -1.43 x 10 -2 0.965 1.46 x	 10 - ' 8.34 x 10 -3 24 1

484 121 -3.16 x 10 -6 0.995 3.85 x 10 -2 2.13 x 1013 188 1

964 241 +2.16 x 10 -11 0.9994 9.53 x 10-3 5.35 x 10 -4 1485 1

CONVERGENCE RATE 0(h 
2) 0(h 2)
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Table A.3.2 1D QUICKEST with GRADT terms

N h- ' `+'min Y'max Emax L, CPU time Rel. time

124 31 -3.24 x 10 -2 0.844 -1.66 x 10 -1 1.26 x 10-2 4 1.208
244 61 -2.19 x 10 -4 0.973 -3.91 x 10 -2 3.20 x 10 -3 29 1.208
484 121 -5.17 x 10 -8 0.997 -8.50 x 10 -3 7.96 x 10 -4 227 1.208

1964,241 -1.43	 x	 10 - ' 1 0.9996 -2.02 x 10 -3 1.99 x 10 -4 1794 1.208

CONVERGENCE RATE 0(h 2) 0(h 2)

Table A.3.3 UTOPIA

N h - ' min max Emax L, CPU time Rel. time

124 31 -5.93 x 10 -3 0.872 -1.28 x 10 -1 6.47 x 10 -3 4 1.333
244 61 -1.02 x 10.5 0.977 -2.29 x 10 -2 9.95 x 10 -4 31 1.333
484 121 +6.01 x 10 -11 0.997 -3.07 x 10 -3 1.30 x 10-4 249 1.333
964 241 +1.67 x 10 -" 0.9996 -3.86 x 10 -4 1.60 x 10 -5 1980 1.333

CONVERGENCE RATE 0(h 3) 0(h')

Table A.3.4 UTOPIA with first 2D limiter

N h - ' Omin 0max Emax I	 L, CPU time I	 Rel. time

124 31 7.80 x 10-g 0.716 3.95 x 10 -1 3.15 x 10 -2 5 1.505
244 61 2.48 x 10-7 0.888 4.23 x 10 - ' 2.14 x 10 -2 36 1.505
484 121 3.76 x 10_ g 0.943 2.95 x 10 - ' 1.31 x 10-2 283 1.505
964 241 1 1 1.75 x 10 -9 0.956 1.65 x	 10 -1 7.40 x 10 -3 2235 1.505

CONVERGENCE RATE	 I O(h) O(h)

Table A.3 .5 UTO PIA with second 2D limiter

N h-'
I 

	min max Emax I	 L1 I CPU time I	 Ref. time

124 31 3.00 x 10 -9 0.711 -2.89 x 10 - ' 1.05 x 10 -2 5 1.623
244 61 1.44 x	 10 -10 0.886 -1.15 x 10 -1 3.27 x 10 -3 39 1.623
484 121 5.42 x 10-" 0.957 +5.72 x 10-2 8.26 x 10 -4 305 1.623
964 241 3.35 x 10- " 0.984 +2.59 x 10-2 2.06 x 10 -4 2410 1.623

CONVERGENCE RATE O(h) 0(h 2)
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APPENDIX 4

THREE DIMENSIONAL TVD CONSTRAINTS

In three dimensions, TVD flux-limiters can be used component-wise but, as in the two-
dimensional case, there will be restrictions on the component Courant numbers mandated by
positivity preservation. The three-dimensional update equation corresponding to (84) is

P = E + Cs [0 - (2 - cz ) E + Cy [0 - (2 - cy ) E

+ Cz [0 - (2 - cZ ) E ] > 0	
(A.4.1)

This is equivalent to

(Cx - 1)2 + (Cy - 1)2 + (CZ - 1)2 >_ 2	 (A.4.2)

for (cx , cy , cz <_ 1). The boundary of the positivity-preserving region is thus a portion of
a sphere of radius F. For cx = cy = cz = c, this means that

C < 1 - 2/3 = 0.184	 (A.4.3)

compared with c <_ 1 - 1/2 = 0.293 in the two-dimensional case. Clearly, (A.4.2)
represents a rather severe restriction on the allowable time step.

APPENDIX 5

THREE-DIMENSIONAL LIMITER

The three-dimensional generalisation of (130) and (131) can be derived in a straight-forward
manner. For finding the slope S,, refer to Figure A.1.1. By analogy with (112), the update
algorithm can be written

op = op [1 + Cx Cy + Cy CZ + CZ Cs — (Cx + Cy + Cz ) Si ]

+ Cx (Si — Cy — Cz) O w + Cy (Sl — Cz — Cx) 0S + Cz (Sl — Cs — Cy ) 4B

+ Cx Cy 0Sw + Cy C  Os + Cz Cx OBw
	 (A.5.1)

and this is required to be nonnegative. The Op -term can be eliminated by choosing

( 1+ Cx Cy + Cy Cz + Cz C.') S =(A.5.2)
(Cx + Cy + cz)

Note that this is consistent with the two-dimensional formula (c z = 0) and the one-
dimensional case (cy = cz = 0). The coefficient of ow , for example, then becomes
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Cx (1 - Cy CZ - Cy - CZ) 	
(A.5.3)

(Cx + Cy + Cz)

with similar formulas for the coefficients of OS and OB obtained by permutation. These
coefficients become negative in a rather significant portion of the (cx , cy , cz ) space for which
Sl >_ 1, thus further restricting the PP region.

The analogue of (126) becomes

4)P = (^P ( 1 + Cx Cy + Cy Cz 	x+ Cz C - Cx S2 - Cy SZ Y - Cz S2 )

+ Cx (S2 - Cy - Cz) OW + Cy (S2 - Cz - Cx) OS + Cz (S2 - Cx - Cy) B

+ Cx Cy OSW + Cy Cz OBS + Cz Cx 'k BW	 (A.5.4)

Eliminating O W , O S , and 0B gives

S 	 = Cy + Cz	 (A.5.5)

SZ = CZ + Cx	 (A.5.6)

Sz = X + cy	 (A.5.7)

resulting in

4) P = OP (1 - Cx Cy - Cy Cz - Cz Cx)

+ Cx Cy OSW + Cy Cz O BS + Cz Cx 4BW	 (A.5. 8)

representing a nonnegative weighting, provided

Cx Cy + Cy Cz + Cz Cx < 1	 (A.5.9)

From the S2 formulae it can be seen that, unfortunately, one of the S2 's becomes unity
whenever any two Courant number components are simultaneously equal to 0.5. For some
applications this may be too restrictive. Further generalisations, re-introducing the non-
symmetrical f function in order to find less restrictive limiter constraints, are currently being
explored.
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APPENDIX 6

UPWINDING STRATEGY WITHOUT IF STATEMENTS

Clearly, in order to take account of all combinations of signs of the Courant number
components at any given face, the upwinding strategy could become quite complicated.
Using IF statements to branch to a different formula for each combination is conceptually
straight-forward but computationally very expensive. Figure A.6.1 shows the four combina-
tions for a given face in the two-dimensional case, using a generic stencil notation
representing upwind (U), downwind (D), central (C), etc., similar to Figure 17(a) for the
one-dimensional case. Assume that the face in question is the left face of a particular control
volume centred at node (1, J). The following upwinding strategy avoids IF statements,
relying instead on the signs of the Courant number components at the face, and the
FORTRAN nearest-integer function, NINT.

Figure A.6.2 shows the labelling of node-values for the west face of a control volume
(I, J) according to the signs of cx,, and cy„,. Note that any of the cases in Figure A.6.1 can
be viewed in the form of Figure A.6.2 (imagine a case in A.6.1 drawn on a sheet of
transparent film; by rotating and/or turning over the sheet, the configuration can always be
made to conform to that in A.6.2). Using the nearest-integer function, NINT, the node
labels can be described in terms of the signs of czH, and cy,, as follows:

IWU = I - NINT[0.5 + SIGN(1.5, cxw)] 	 (A.6.1)

IWC = I - NINT[0.5 + SIGN(0.5, csw)]	 (A.6.2)

IWD = I - NINT[0.5 - SIGN(0.5, czw)^	 (A.6.3)

JWU = J - NINT[SIGN(1.0, cyw)]	 (A.6.4)

and

JWD = J + NINT[SIGN(1.0, c,)] 	 (A.6.5)

The six node-values of the generic third-order west-face stencil are given by

Oco = 0 (IWC, JWD)	 (A.6.6)

0u = 0 (IWU, J)	 (A.6.7)

ow _ 4 (IWC, J)	 (A.6.8)
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-^D = 0 (IWD, J)	 (A.6.9)

4cu =	 (IWC, JWU)	 (A.6.10)

and

oDu = (IWD, JWU) (A.6.11)

The UTOPIA west face-value corresponding to (58) is then given by

z

0W = OLIN - I 
c2w I GRADNW - ( 1

 6 czw) CURVNW - I C,I GRADTW

1

4

 I [(I _ I cyw I ) CURVTW - (1 - I z, I ) TWISTW]	 (A.6.12)

where

OLIN	 2 (OD + 0C)	
(A.6.13)

GRADNL= ^D	 c	 (A.6.14)

CURVNL = 0D - 20' + u	 (A.6.15)

GRADTL = ^c - 0cu	 (A.6.16)

CURVTL = 0'D - 2 0c + 0'	 (A.6.17)

and

TWISTL = ^D - ^c - ODu + ^cu	 (A. 6.18)

Higher-order formulas corresponding to (59) can be designed in an obvious way. Note
particularly the use of the absolute-values of the Courant number components in (A.6.12).
A similar procedure is easily constructed for the other (south) face (in two dimensions). And
it should be clear that the extension to three dimensions follows the same strategy for each
of the three face-values involved for any given control volume.
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(a)
	

(b)

Figure 1--Schematic of exact solution for 0 = 45 0. The small cross (+) indicates the geometric centre of the domain at grid point (16, 16). Note

that boundaries correspond to control-volume cell faces. Periodic boundary conditions imply: 4)(32, j) _ -^(1, j), (^(i, 32) _ (^(i, 1), etc. Positive

"density" contours in this and all subsequent contour-plots are shown in increments of 0.1.
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Figure 2.—Results for the leap-frog scheme for 0 = 45 0; cx = cy = 0.25;
N = 1/cxh = 124, At = ^20 124. Negative contours shown dashed
(+ _ -0.001, -0.05). 	 max = 0.928, 4^ min = -0.091.

Figure 3.—Results for the one-dimensional Lax-Wendroff scheme
used coordinate-wise for 0 = 45°; cx = cy = 0.25; N = 124,
At = X124. Negative contours are: = -0.0001, -0.1, -0.2, -0.3.
Note the phase lag, slight overshoot max =1.040), and large
undershoots (,^ min = -0.366).
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Figure 4.—Results for first-order upwinding used coordinate-wise for
0 = 451; cx = cy = 0.5; N = 62, At = ^20 62. (^ max = 0.473; no
undershoots.

46

Figure 5—Stability region (shaded) for the coordinate-wise
first-order method. The scheme is stable for jc x j + Icyl 51.
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Figure 6.—Advective flux at an angle into the west face of a
control volume, suggesting dependence on the transverse
gradient



Figure 7.—Results for first-order upwinding including GRADT terms;
0 = 45°; cx = cy = 0.5; N = 62, At =X62. Note the good isotropy
in comparison with Figure 4. 4)max = 0.366; no undershoot.
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Figure 8.--Calculation of the time-averaged west-face
value assuming a linear (x, y) dependence in the vicinity
of the face, collocated at the three nodes shown
(for cx, cy > 0).
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Figure 9.—Results of the generalised two-dimensional Lax-Wendroff
scheme including GRADT terms; 0 = 45°; cx = cy = 0.25; N = 124,
At = ,12J1 24.  max = 0.867, Amin = –0.087.

0j

Figure 10.—Six-point stencil used for deriving the two-dimen-
sional Lax-Wendroff scheme by back-tracking along an
advective characteristic. Note the upwind bias (for the case
shown, cx, °y > 0).

Figure 11.—Upwind-biaWd ten-point stencil used for the interpol-
ation of on(g, _q) given by Equation (44).
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Figure 12.—Results for the uniformly third order polynomial interpola-	 Figure 13.—UTOPIA results for 0 = tan- 1 (1/2) - 26.565 1; cx = 0.5,

	

tion algorithm (UTOPIA); 0 = 45°; cx = cy = 0.25; N = 124, At = X124	 cy = 0.25; N =124, Ot = X124.	 = 0.872, 4)min = -0.006•
Amax = 0.885, Amin = -0.004. Note the good isotropy and phase
accuracy.
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Figure 14.—UTOPIA results for 0 = 0 1 ; cX = 0.5, cy = 0; N = 62,	 Figure 15.—Results using the one-dimensional QUICKEST scheme
At = 1/62. 6max = 0.958, Amin = -0.002. 	 coordinate-wise (Davis 8 Moore's method) for 0 = 451;

cX = cy = 0.25; N = 124, At = X124. Amax = 1.167, Amin = -0.111.
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(a) Original variables. (b) Normalized variables.
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Figure 16.—'Quasi-third-order' method consisting of QUICKEST
together with GRADT terms (only) for 0 = 45 1 ; cX = cy = 0.25;
N =124, At = 42/124. Amax = 0.880, 40min = -0.010.

Figure 17.—Definition of generic upwind (U), downwind (D), and central (C) node -values, depending on the
sign of u.
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Figure 18.—Interpolation through the same three (normalised) node-values.
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Figure 19.—Schematic one-dimensional control-volume show-
ing east and west face -values.

Figure 20.—One-dimensional universal limiter constraints
	 Figure 21.—Estimation of the time-averaged face-

corresponding to (63), (66), and (67). Note the slopes:	 value, 6 f , assuming linear variation between n and
St = 1 /c, and (for later reference) S 2 = 0. The case shown	 and constant advecting velocity.
isis for c = 0.25.



Figure 23.—TVD flux-limiter constraints in terms of ¢ t vs. on
The case shown is for c = 0.25 (S t =1.75, S2 = 0.25).

Figure 22.—TVD flux-limiter constraints in terms of ¢ vs. ¢n.

St , S2
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Figure 24.—Upper constraint slopes, S 1 and S2 , for ULTIMATE
(heavy lines) and TVD schemes (light lines).

Figure 25.—One-dimensional TVD (CLAM) scheme of van Leer
in the (^'C, +f) plane.
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Figure 26.—Results using the one-dimensional TVD (CLAM) scheme
coordinate-wise for 0 = 45°; cX = cy = 0.25; N = 124, At = 42Y 124.
Amax = 0.754, no undershoot

Figure 27.—One-dimensional ULTIMATE QUICKEST scheme used
coordinate-wise for 0 = 45°; cX = cy = 0.25; N =124, At = X124.
Amax = 0.985, min ° –0.124.
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Figure 28.—Normalised 'front' passing obliquely through a control
volume.

Figure 29.—Restriction on the allowable component Courant numbers
for positivity-preserving schemes using TVD limiters in each coor-
dinate direction. Boundaries are quarter -circles with centres at
(±1, t1).

Figure 30.—Contours in the (cx, cy) plane of the first 2D limiter slope,
S t , according to Equation 97.
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Figure 31.—Two-dimensional limiter of (97) applied to the QUICKEST
scheme used coordinate-wise for 0 = 45°; cX = cy = 0.25; N = 124,

Figure 32.—The two-dimensional limiter of (97) applied to UTOPIA
for 0 = 45°; c, = cy = 0.25; N = 124, At = ^ 124. Amax = 0.777, no

At = X124. $max = 0.874, no undershoot 	 undershoot.



57

Figure 33.—Second two-dimensional limiter portrayed in the
(fin , ^0) plane, according to (119) and (120). The case
shown is for cx = cy = 0.25 (S t = 2.125, S2 = 0.25).

Figure 34.—Contour lines of S 1 according to (130). Note the "flat'
regions (St –* 1) towards the comers of the diagram.
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O\0

Figure 35.—The two-dimensional limiter of (130), (131) applied to
UTOPIA for 0 = 45°; cX = cy = 0.25; N = 124, At = V^J 124.
4)max = 0.782, no undershoot.

O

Figure 36.—The two-dimensional limiter of (130), (131) applied to

UTOPIA for 8 = tan- 1 (1 /2) - 26.565°; cX = 0.25, cy = 0.125; N = 248,
At = X248. Amax = 0.752, no undershoot.



59

f	 0

Figure 37.—The two-dimensional limiter of (130), (131) applied to
UTOPIA for 0 = tan-1 (1 /3) =18.435°; cX = 0.25 = 3 cy; N = 372,
At = x/372. 6max = 0.731, no undershoot

Figure 38.—The two-dimensional limiter of (130), (131) applied to
UTOPIA for 0 = 01; cX = 0.5, cy = 0; N = 62, At =1/62.
(^rt,ax = 0.927, no undershoot
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(a) Two inflows on
adjacent faces.
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(b) Three outflows.

Figure 39.—The two-dimensional limiter of (130), (131) applied to
UTOPIA for © = 45°; cx = cy = 0.5; N = 62, At ='&62.
4)max = 0.715, no undershoot.

(c) Three inflows. 	 (d) Inflows (outflows) on
opposite faces.

Figure 40.—Four inflow-outflow configurations.
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Figure A.1.1 .—Twenty-node three-dimensional molecule for third
order upwinding. For the case shown, cx, cy, cZ >0.
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Figure A.1.2.—Upwind-biased ten-node molecule used for
computing the west-face advected value. The case shown
is for cx, cy, cZ >0.

x

SS

WW	 W	 w	 P

Figure A.2.1.—Variation of the normal gradient at the west face due
to curvature in the advected profile.
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Figure A.3.1.--Computational efficiency diagram (error versus cost, on a log-log scale) for the two-dimensional generalised
Lax-Wendroff scheme, the one-dimensional QUICKEST scheme used coordinate-wise together with transverse-gradient terms,
and the uniformly third-order polynominal interpolation algorithm (UTOPIA).

(a) cx > 0, cy > 0. 	 (b) cx < 0, cy > 0.

(c) cx > 0, cy < 0.	 (d) cx < 0, cy < 0.

Figure A-6.1.—Four possible two-dimensional stencils depending on
the signs of the velocity components at the face in question.
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(IWU, J)	 (IWC, J)	 I	 (IWD, J)

(^CU^	 ^(^DU
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Figure A.6.2.—Generic two-dimensional stencil for the west
face of the control volume.
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